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i ; i db ,
The final step is to return {0 the original variable x. The first term 0/2 1S rezplz-;lcz::i y ;
i i identity si = 2sinf cos 0.
L tan~! x. The second term involving sin 26 requires the identity sin 260 si
A/ 2 3 i m im
P : The reference triangle (I12ure 7.9) tells us that
‘ 1 1 1 X . 1 _ 1 X -
- fsin29=-2*sm6c059=§- T =2 1+x
1
no-- i i leted:
in = V- The integration can now be comp
P e |
l dx §_+sm29)+c
= NS (L ) 2 4
FIGURE 7.9 i l L . .
=™ T+ )

Related Exercises 15-46 <

4\/’2”_’
Yt A =0 0

EXAMPLES A secant substitution Evaluate .[1 T2

il . : .
illustrates a useful preliminary step before making a trigonome

SOLUTION This example I e
ontain any of the patterns 1
i . wever, lead to one of those

ric substitation. The integra ' gt

i i ituti tine the square does, nO .

g SUbsmgtfn;t Comgle— (i +* 2()312 — 9. we change variables withu = x + 2
ing that x K 9 5

patterns. Noting

and write the integral as

4 \/r”z’_‘
4 ‘\/;mxlr'ls dx = / -E:_Q'_)___g dx Cmnp]ctc the square.
vA - e
| 1

Recall that to complete the square with
2 + bx + c, you add and subtract
(b/2)? to the expression, and then factor
1o form a perfect square. You could

also make the single substitution

¥ 4+ 2 =3sechin Example 5.

x+ 2 2

E w =9 W=k Zdu= dx E

= du Change limits of integration. =

3 i }

f

ituti = here 0 < 6 < 7/2), &

i i cant substitution u 3sec (W i

This new integral calls for the se = st

s e /i — 9 = 3tanf. We also chang

T:\;fi:;‘;f 202 L:;ecfl (Su/3). Because which implies that du = 3sect t3an96 iieoar;c:l i wvltl By v 73 The - }I
6\ — 9 limits of integration: When u = 3,8 = % ]
% Bt L i i integration can now be done: i
b

i=x+ 2,di = dx

x+ 2

T 6 % e
we have 0 = 6 < 7 4@(,{}6 _ @du
3 U
1

3 . 1)
= ]ﬂ/ g 3sec@tan@dd u = 3secl du = 3secl mnﬂu
0

3sect
/3 —
= 3] tan” 6 dO Simplify-
0
w3 i )
= 3/ (sec?0 — 1) do an@ = sec’ 0 — 1
0
ty 1 integral
Evaluate integrals.
— 3(tan 6 — 9)\ ]
( 0
Simplify.

NG — T

Il

Related Exercises 15 '

SECTION 7.3 EXERCISES

Review Questions
1.  What change of variables is suggested by an integral containing

X2 —9?

2. What change of variables is suggested by an integral containing
Vi + 36?

3. What change of variables is suggested by an integral containing
V100 — x*?
4. If x = 4tan 0, express sin @ in terms of x.

5. If x = 2sin @, express cot ) in terms of x.

6. Ifx = 8sech, express tan 6 in terms of x.

Basic Skills
7-10. Evaluate the following integrals.
, 2 gy . fa,lz Py
E o Vs @ Y A R L
10 Vi
9. f V100 — x* dx 10. / ———dx
3] 0 A f4 = x2

11-14. Evaluate the following integrals.
d
1. /u—x;g 12 f\/36 ~ P dx
(16 — x*)
V9 - x* -
B [————dx 14. [ (36 — 9x3) 1 dx
15-40. Evaluate the following integrals.

dx
15. V64 — x? _—
/ 64 — x“dx 16. f T x =7

18.

17. f"—x /_d_x_
V36 — 2 V16 + 4x2

19, fL i 20 fr_dx—
V2 =81 V1= 22
1. f . _dx
(1 + 42y 22. (o — 367 x>6
2
23, f_f‘ % / dx
24, [ —
V16 — x? (81 + x%)?
Vi — 9
zs] —dn x> 26. fmdx

. X Vi — 1 1
dx N W ot
0 28. f 2 dx, x = 5

2. f——_ﬂ_ﬁ xt
m 30. f]+x2d)(

7.3 Trigonometric Substitutions

V9x? — 25 V9 — A2
ap, [ UEE B e 4 b oel 4
X3 3 x2
33 f __® 34 f e ek
@25 + 2 S eVl —1 3
x? dx
35. f~——dx 36. f—‘ x> 10
(100 — x?)¥? £V xE = 100
% dx
37. /————dx 38. f———,x>1
(81 — x?)? BV -1

dx %
39. /—, W2 40, f——— dx, x < —4
x(x® — 12 (x2— 16)¥2 g

41-46. Evaluating definite integrals Evaluate the following definite
integrals.

16

. f Lo P
o VX + 16 © Jsva Vi — 64

43 f’d‘ . /‘“ _dx
o (9 + 1)2 " v Vix? - 25

4 6V3 2
dx X
45. T TR 46. iy
L/\/j ch(x2 —4) /(: (x2 + 36) .
Further Explorations

47, Explain why or why not Determine whether the following state-
ments are true and give an explanation or counterexample.
a. Ifx = 4tan 0, then csc @ = 4/x.
; 2 ;
b. The integral fl V1 — x* dx does not have a finite real value.

¢. The integral ff V x2 — 1 dx does not have a finite real value.

d. The integral f I .
xX+4x+9

trigonometric substitution.

cannot be evaluated using a

48-55. Completing the square Evaluate the following integrals.

dx dx
48. /———— 49. [ —
x*—=2x + 10 g fx2+6x+18

d b=y +
50. ]—z—x—— S W WS
25— 12x + 36 Vit —2x + 10
x2—8x + 16

2 4+ 2x +
52, fﬁ—zx—4dx,x>4

Vx?— 4x

4
s4.]-2i——
1 x=2x+ 10

f(\fm)f{mﬁ) &
12 8x%— 8% + 11

' (9 + 8x — x1)¥? *
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56. Area of an ellipse The upper h.al.f
of the ellipse centered at the origin
with axes of length 2a and 2b is

b
described by y = Vat — x*

(see figure). Find the area of the
ellipse in terms of @ and b.

57. Area of a segment of a circle Use two appl'oaghes to show that
the area of a cap (or segment) of a circle of radius r subtended by

an angle @ (see figure) is given by

12 (0 — sin0).

1
Ascgia

a. Find the area using geometry (no calculus).
b. Find the area using calculus.
capor
segment

58. Area of a lune A lune is a 1
crescent-shaped region bounded
by the arcs of two circles. Let C; c,
be a circle of radius 4 centered at
the origin. Let C; be a circle of ra-
dius 3 centered at the point (2,0).
Find the area of the lune (shaded
in the figure) that lies inside C,
and outside Cs.

59, Area and volume Consider the y1
function f(x) = (9 + %) and
the region R on the interval [0,4]
(see figure).

a. Find the area of R.

b. Find the volume of the solid
generated when R is revolved
about the x-axis.

¢. Find the volume of the solid
generated when R is revolved
about the y-axis.

: 2\-3/2
160. Area of a region Graph the function flx)=(06+x ) ar'ld
find the area of the region bounded by the curve and the x-axis on

the interval [0,3].

)
61. Arc length of a parabola Find the length of the curve y = aX
from x = 0to x = 10, wherea = 0 is a real number.

<1 63-65. Using the integral of sec® u By reduction formula 4 in

62. Comparing areas On the interval [0, 2], the grapills of
‘ £(x) = x*/3and g(x) = x%(9 — 227"/ have similar shapes.
a. Tind the area of the region bounded by the graph of f and the !
x-axis on the interval [0, 2].
b. Find the area of the region bounded by the graph of g and the i
x-axis on the interval [0,2].
¢. Which region has the greater area?

Section 7.2,

[sec%cdu N -;:(secutanu + In|secu + tan ul) ful,

Graph the following functions and find the area under the curve on the
given interval.

6 fy=0-2%[03] 6 f=0 )2, [0,2]

65. f(x)=(x*— gz, 15,16
66-67. Asymmetric integrands Evaluate the following integrals.
Consider completing the square.

. dx
Lvi (= 1)z~ 8}

dx
1 + sinx + cosx

dx
66- [\/(x ~ 13— x)

68. Clever substitution Evaluate j

using the
o % A

F identities sin x = —C08.;

substitution x = 2 tan™" 6. The identities sinx 2 sin 5 C085

X L aX
and cos x = cos’ - sin® 5 e helpful.

Applications .
691?1 A torus (doughnut) Find the volume of the solid torus formed

when the circle of radius 4 centered at (0,6) is revolved about =
the x-axis. §

e

70. Bagel wars Bob and Bruce bake bagels I(shaped l.ike tori). '_I'heyd
both make standard bagels that have an inner radius of 0.5 in e;ln ;
an outer radius of 2.5 in. Bob plans to increase the '-aolumc of his ‘
bagels by decreasing the inner radius by 20% (leaving the o'uter f
radius unchanged). Bruce plans 0 increase the voh-:me of Fus r
bagels by increasing the outer radius b)ll 20% (leaving theﬁ mt}im j
dius unchanged). Whose new bagels will ha}re‘ the greatelq VO 1aiﬁ
Does this result depend on the size of the original bagels? EXp 1

outer radiug

%

inner radius

71. Electric field due to a line of charge A total charge of Q is dis-
tributed uniformly on a line segment of length 2L along the y-axis
(see figure). The x-component of the electric field at a point (a, 0)
on the x-axis is given by

_ kQa 5 dy
E(a) = 27, [L (a® + y2)¥?

where k is a physical constant and a > 0.
kQ
aVa® + L*

b. Letting p = Q/2L be the charge density on the line segment,
show that if L — oo, then E (a) = 2kp/a.

a. Confirm that £, (a) =

(See the Guided Projects for a derivation of this and other similar
integrals.)

Line of charge
L--/£ i 7_3,,]
(a,0)
®
o X
=0

72. Magnetic field due to current in a straight wire A long straight Fi 74,
wire of length 2L on the y-axis carries a current /. According to
the Biot-Savart Law, the magnitude of the magnetic field due to
the current at a point (a, 0) is given by

} -
I
Bla)= EX f S5,

4w ), 2
where 1, is a physical constant, @ > 0, and @, r, and y are related
as shown in the figure.
a. Show that the magnitude of the magnetic field at (a, 0) is
IL
B(a) = Mo

L 2maV @+ L
b. What is the magnitude of the magnetic field at (a, 0) due to an
infinitely long wire (L — ©0)?

YA
I+
0
.
Y (a,0)
0 a & 5

-1 _\[Current 1 ]

B R ;
mFSt descent time The cycloid is the curve traced by a point on
: cyclr:; of arolling wheel. Imagine a wire shaped like an inverted
B 1d (see figure). A bead sliding down this wire without fric-

tion {
¥ has some remarkable properties. Among all wire shapes, the

7.3 Trigonometric Substitutions 475

cycloid is the shape that produces the fastest descent time

(see the Guided Project The Amazing Cycloid for more about this
brachistochrone property). It can be shown that the descent time
between any two points 0 = a = b = 7 on the curve is

b
X I — cost
descent time = ———— 1,
. Vg(cosa — cost)

where g is the acceleration due to gravity, ¢ = 0 corresponds (o

the top of the wire, and ¢t = 7 corresponds to the lowest point
on the wire.

(ot

F0=0
\ g=a [1a;uest poiﬂ

. on wire
g |
L

a. Find the descent time on the interval [a, b] by making the
substitution i = cos .

b. Show that when b = 7, the descent time is the same for all
values of a; that is, the descent time to the bottom of the wire
is the same for all starting points.

Maximum path length of a projectile (Adapted from Putnam
Exam 1940) A projectile is launched from the ground with an ini-
tial speed V at an angle 6 from the horizontal. Assume that the
x-axis is the horizontal ground and y is the height above the
ground. Neglecting air resistance and letting g be the acceleration
due to gravity, it can be shown that the trajectory of the projectile
is given by

1, g
) = —— + v her: k=
Y 5 kx Vmaxe Where ——(V i 9)2
(V sin 0)?
and Yo =T 5.
2g

a. Note that the high point of the trajectory occurs at (0, Yp)-
If the projectile is on the ground at (—a, 0) and (a,0),
what is a?

b. Show that the length of the trajectory (arc length) is
8 1 91

¢. Evaluate the arc length integral and express your result in
terms of V, g, and 0.

d. For a fixed value of V and g, show that the launch angle 0
that maximizes the length of the trajectory satisfies
(sin@)In(sec @ + tan6) = 1.

e. Use a graphing utility to approximate the optimal launch angle.

Additional Exercises
[#75-78. Care with the secant substitution Recall that the substi-
tution x = a sec @ implies that x = a (in which case 0 = 0 < 7/2

and tan @ = 0) or x = —a (in which case w/2 < 0 = 7 and
tanf = 0).
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. t
75. Show tha b.

dx _{sec“‘x +C=tan'Vi-1+C ifx>1
71 L—sec'x +C=—tan' Va2 —1+C ifx<-1

xVx
Vit -1
———3——dxforx > land for x < —L
X

76. Evaluate for

2

4177, Graph the function f(x) = -txx—i—% and consider the region

bounded by the curve and the x-axis on [—6, —3). Then, evaluate

—3 P

Vix® =8 : ; :

j VX 7 7 ix. Be sure the result is consistent with the graph.
-6 X

on its domain. Then, find

1
Nzt =36
the area of the region R, bounded by the curve and the x-axis on
[-12,-12/ 4/3] and the region R, bounded by the curve and the
x-axis on [12/V/3,12]. Be sure your results are consistent with

the graph.

79. Visual Proof Let F(x) = JoVa* — 1 dt. The figure shows that
F(x) = area of sector OAB + area of triangle OBC.

5178. Graph the function flx) =

a. Use the figure to prove that F (x) =

asin'(x/a)  x
I S
2 2 a

7.4 Partial Fractions

Later in this chapter, we will s

: dv
integral of the form

Recall that a rational function has of a species that is limited in

the form p/g, where p and g are
polynomials.

method allows us (in princip

'QUICK CHECK| ANSWERS |

1. Use x = 3sin 6 to obtain 9 cos?@. 2. (a) Usex = 3tan®.
(b)Usex = 4 sin@. 3. Letx

20 do
dx = asec’ 0 do. The new integral is f—aﬂ—‘ =

a— b’

« and b are constants. These integrals h:
rational functions. Similar integrals resu
works. The goal of this section istoi
ing rational functions. ‘When

Conclude that f @t — xtdx =
|

a?sin(x/a 2 _ 42

(x/a) REACE )

2 2
[Source: The College Mathematics Journal 34, n0. 3
(May 2003)]

0

= gtan 0, so that

2 (1 + tan0)

1
@ =% lfw=16+c=*mP£+C@
a a a

ce that finding the velocity of a skydiver requires evaluating an
, where a and b are constants. Similarly, finding the population 3

size involves an integral of the form f _——aP (- bP) , where 2
ave the common feature that their integrands aré |
It from modeling mechanical and electrical net-
ntroduce the method of partial fractions for integral-
combined with standard and trigonometric substitutions, this
le) to integrate any rational function.

Method of Partial Fractions

Given a function such as

it is a straightforward task to
(x + 4)
f(x) i (x e

The purpose of parti

difficult to integrate, the method of partial fractions produces an eq

is much easier to integrate.

al fractions is to reverse this process. Given a rational function

1
f(X)=;—_§+

x + 4 )
find a common denominator and write the equivalent expl’esSi

+2(x—2)_ 3x 3 3x
2)(x + 4) F(xr-?.)(x+4)—x2+2x—8'

uivalent function

'QUICK CHECK 1| Find an antiderivative

of £(x) - f_ -

Tx -2

Notice that the numerator of the original
rational function does not affect the form
of the partial fraction decomposition.
The constants A and B are called
undetermined coefficients.

» This step requires that x # 2 and
x # —4; both values are outside the
domain of f.
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' rational function partial fracti
action
- method of decomposition
- 3x partial fractions 1 2
(—=2)x+4) 2+ 2% —8 * =5 a+d
Difficult to integrate: Easy tointegrate:
f 3x P 1 2
————il¥
X2+ 2x — 8 /(x~2+x+4)dx
The Key Idea Working with the same function, f(x) = S S our objective
is to write it in the form =
A " B
x—2 x+4

. 3

ti{t:zr; efi ;md B are constants t9 l?e determined. This expression is called the partial frac-
: . mpomtmp of the original function; in this case, it has two terms, one for each
actor in the denominator of the original function. 1

- i’fshe c‘ct)}]slt:fmts A and B are clf:t.ermined using the condition that the original function f
partial fraction decomposition must be equal for all values of x; that is

3x A B
2 +9) £—2 E+4 (1)

Multiplying both sides of equation (1) by (x — 2)(x + 4) gives
3x = A(x + 4) + B(x — 2).

Collecting like powers of x results in

3x = (A + B)x + (44 — 2B).

If equation (2) is to hold for all values of x, then

(2)

« the coefficients of x! on both sides of the equation must match;
o the coefficients of x” (that is, the constants) on both sides of the equation must match
] Y
3x+0=(A+ B)x + (4A — 2B)

e

This observation leads to two equations for A and B.

Match coefficients of x':
Match coefficients of x":

3=A+B
0=4A— 2B

The first equation says that A = 3 — B. Substituting A = 3 — B into the second equation

gives the equation 0 = 4(3 — B) — 2B. Solving f
: or B, = B =
The value of A now follows; we have A = 3 — 1%3 = L. e ind (hat OF = 12, or =2

Substituting these val i : 5
fion:is & values of A and B into equation (1), the partial fraction decomposi-
3x 1 2
= +
= td] z—2 &4




